Atomistic models of hydrogenated amorphous silicon nitride from first principles

نویسندگان

  • K. Jarolimek
  • R. A. de Groot
  • G. A. de Wijs
  • M. Zeman
چکیده

We present a theoretical study of hydrogenated amorphous silicon nitride a-SiNx :H , with equal concentrations of Si and N atoms x=1 , for two considerably different densities 2.0 and 3.0 g /cm3 . Densities and hydrogen concentration were chosen according to experimental data. Using first-principles molecular-dynamics within density-functional theory the models were generated by cooling from the liquid. Where both models have a short-range order resembling that of crystalline Si3N4 because of their different densities and hydrogen concentrations they show marked differences at longer length scales. The low-density nitride forms a percolating network of voids with the internal surfaces passivated by hydrogen. Although some voids are still present for the high-density nitride, this material has a much denser and uniform space filling. The structure factors reveal some tendency for the nonstoichiometric high-density nitride to phase separate into nitrogen rich and poor areas. For our slowest cooling rate 0.023 K/fs we obtain models with a modest number of defect states, where the low high density nitride favors undercoordinated overcoordinated defects. Analysis of the structural defects and electronic density of states shows that there is no direct one-to-one correspondence between the structural defects and states in the gap. There are several structural defects that do not contribute to in-gap states and there are in-gap states that do only have little to no contributions from atoms in structural defects. Finally an estimation of the size and cooling rate effects on the amorphous network is reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Modeling of Non-equilibrium Plasma Discharge of Hydrogenated Silicon Nitride (SiH4/NH3/H2)

In this work, we model a radiofrequency discharge of hydrogenated silicon nitride in a capacitive coupled plasma reactor using Maxwellian and non-Maxwellian electron energy distribution function. The purpose is to investigate whether there is a real advantage and a significant contribution using non-Maxwellian electron energy distribution function rather than Maxwellian one for determining the ...

متن کامل

Interference fringe-free transmission spectroscopy of amorphous thin films

Articles you may be interested in Photoluminescence properties and crystallization of silicon quantum dots in hydrogenated amorphous Si-rich silicon carbide films Amorphous silicon thin-film transistors with field-effect mobilities of 2 cm 2 / V s for electrons and 0.1 cm 2 / V s for holes Appl. Optical study of disorder and defects in hydrogenated amorphous silicon carbon alloys Appl. Effect o...

متن کامل

Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors

We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with ...

متن کامل

Inverse approach to atomistic modeling: Applications to a-Si:H and g-GeSe2

We discuss an inverse approach for atomistic modeling of glassy materials. The focus is on structural modeling and electronic properties of hydrogenated amorphous silicon and glassy GeSe2 alloy. The work is based upon a new approach ‘experimentally constrained molecular relaxation (ECMR)’. Unlike conventional approaches (such as molecular dynamics (MD) and Monte Carlo simulations(MC), where a p...

متن کامل

Bulk synthesis of a-SixNyH and a-SixOy straight and coiled nanowires{

We report the bulk synthesis of hydrogenated, amorphous SixNy and SixOy nanowires using pools of molten gallium as the solvent medium and microwave plasma consisting of silane in nitrogen and silane in oxygen respectively. High densities of multiple nanowires nucleated and grew from molten gallium pools. The resulting nanowires were tens of nanometers in diameter and tens of microns long. Elect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010